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Cognitive Workload

ABSTRACT

The original 2000 AMBR project sought to evaluate how well four human
performance models simulated behavior of human participants. Participants and
models completed a modified version of an air traffic control task and were
compared on the dimensions of performance, reaction time, and subjective
workload ratings. The current study replicated the human performance findings of
the previous phase of AMBR and added eye tracking analyses to enhance
understanding of participants' behavior and to compare NASA TLX workload
ratings with ACT-R workload predictions and ICA estimates. Examination of
gaze position and patterns of eye movement provided evidence that participants
adopted different visual strategies to complete the task in different display
conditions and at different levels of demand. Evaluation of workload measures
revealed that the three workload measures analyzed seemed to be estimating
different facets of the broad concept of workload. Applicability of eye tracking
analyses to understanding cognitive workload and augmenting cognitive models
is discussed.
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CROSS-VALIDATION OF INDICATORS OF COGNITIVE WORKLOAD

BACKGROUND

In 2000, the Air Force Research Laboratory (in association with BBN
Technologies) launched the Agent-based Modeling and Behavior Representation
Project (AMBR). The goal of AMBR was to evaluate and compare the accuracy
of several human performance models on a single complex task. This application
of multiple models to an identical task environment allowed developers to
examine not only how well each model predicted behavior and performance of
human participants but also which models specifically were more accurate than
others and in what specific areas. The participating developers were Soar
Technologies, CHI Systems, AFRL, and Carnegie Mellon University. Each
provided a model to be tested against 16 human participants and compared with
the other three models.

The task chosen for use in AMBR was a modified version of an air traffic
control task, in which each participant acted as an air traffic controller,
responsible for handling incoming and outgoing aircraft as they traversed a radar
screen. The design of the task itself was particularly well suited for use in human
performance modeling. In order to successfully complete all of the desired
objectives of the air traffic controller, human participants and human performance
models were required to complete goal-directed behaviors under time pressure.
This requirement led to shifts in attention across different regions of the screen,
continual prioritization of necessary actions, and management of multiple
objectives simultaneously despite frequent interruptions (Deutsch and Cramer,
1998). Based on these aspects of the task, modelers were faced with the challenge
of designing models that captured the strategies used by humans to process
information that arrives at inconvenient and unexpected times, disrupting ongoing
cognitive processes and obscuring important events and necessary actions.

Analysis dealt with model predictions of task performance, reaction time,
and workload ratings. Data for each model was averaged and compared to the
averages of the 16 human participants. Comparisons were made across three
levels of demand of the air traffic control task and two display types: text display,
in which task demands were conveyed through text messages alone and color
display, in which text messages were accompanied by aircraft color-coding.
Results from human participants indicated that performance suffered in the text
display conditions, especially as task demand increased. Reaction times were
slower in the text display condition, and this effect was more pronounced at
higher levels of demand. In addition, subjective workload ratings on the NASA
TLX indicated that participants felt that the text display condition at the higher
levels of demand required increased cognitive effort (Tenney & Spector, 2001).
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All four of the models used in comparison echoed these trends. Although
some models were more accurate than others in predicting different facets of these
results, the general tendency of participants to perform more poorly, more slowly,
and with a higher sense of effort in the text display condition and at higher
demand levels was supported by each model. Overall, the models seemed to be
simulating human behavior and performance very accurately.

Despite the success of this first phase of the AMBR project, a review of
the findings by an expert panel expressed some concerns about the results (Gray,
2000). First, the NASA TLX, which was used as the subjective workload
measure, is somewhat suspect in its representation of actual cognitive workload.
This criticism is largely based on the fact that the TLX assumes that participants
are aware of and capable of interpreting their level of workload. More stressful
parts of the task may not be fully reflected unless they immediately precede the
ratings at the end of the simulation. In addition, some of the individual scales of
the TLX are confusing, and others can not readily be applied to the AMBR task.
Given the shortcomings of this subjective measure, it is clear that an objective
psychophysiological measure of workload would allow researchers to assess more
accurately the amount of cognitive effort expended by human participants. This
objective workload measure could then be compared with estimates of workload
from cognitive models such as the one provided by the Adaptive Character of
Thought - Rational model (ACT-R). The current study employed a cross-
validation methodology to compare the ACT-R workload estimates with an
objective psychophysiological measure. This comparison, along with analysis of
the TLX, should provide a more comprehensive representation of workload
during the AMBR task, incorporating subjective, psychophysiological, and
predictive measures on each scenario.

Secondly, the original AMBR project lacked data on eye movements
which would have helped to determine which strategies human participants used
to meet task demands and how those strategies changed in different scenarios.
The use of eye tracking during testing of human participants would have provided
invaluable insight into the specific cognitive and oculomotor processes occurring
during various levels of demand and different display types. Without data on eye
movements, the crucial link between human performance model and human
performance remains hidden. That is, while AMBR successfully demonstrates
how well a model can simulate task behavior, it does not provide any information
on the individual strategies that lead to that behavior; specifically, how tactics
change and what aspects of the interface receive more attention from people in
different scenarios. As impressive as it is that the models accurately predicted
performance, reaction time, and subjective workload ratings, the honing of these
models to take into account specific changes in strategy from scenario to scenario
would be even more useful.
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Comparing predictive models and descriptive workload estimates

In order to design models that provide credible predictions of cognitive
workload, it is important to first validate these model predictions against objective
measures of human workload. Previous research has demonstrated some of the
inherent difficulties in producing reliable model predictions of workload without
such validation. Schveneveldt et al. (1998) assessed the ability of a model to
determine workload using information firom task performance and requirements.
Based on these factors a model was designed and compared with subjective
workload assessment task (SWAT) ratings on three simple tasks. Although the
model projections proved somewhat accurate in predicting workload ratings of
human participants, the researchers concluded that these effects were well below
the range of practical use and recommended that physiological workload
measures be used in future modeling efforts.

More recently, efforts have been made to incorporate such physiological
measures in validating model workload predictions. One such study (Son et al.,
2005) used functional Near Infra Red (fNIR) technology as a means of estimating
workload by measuring blood activity in the prefrontal cortex during task
completion. This study compared ACT-R model predictions of workload with
fNIR workload data while completing an auditory classification task at various
levels of difficulty. Results indicated that ACT-R workload predictions were
positively associated with blood volume activation levels, providing support for
the model estimates as accurate predictions of workload experienced by human
participants. The researchers acknowledge a great deal of disparity among
individual physiological responses, but concluded that data from physiological
observation and cognitive model prediction reveal the same general pattern. These
studies demonstrate both the complexity of measuring cognitive workload and the
value of comparing multiple workload estimates on a single task.

Convergent research on cognitive models and eye movements.

The link between eye movement analysis and cognitive modeling is
extremely intuitive. These methodologies are often utilized in tandem to support
and explain one another. Cognitive models can be used to identify a particular
visual pattern as evidence of a specific cognitive strategy. Eye movement data can
be used as a basis for validating cognitive models or designing others that more
appropriately take these data into account. Generally speaking, in order to model
human behavior with the highest possible degree of fidelity, it is important to
understand precisely what the eyes are doing.

Hornof and Halverson (2003) demonstrated the applicability of eye
tracking to cognitive modeling in their analysis of visual search strategies. In this
study, eight models were created to simulate performance on a letter search of a
static computer interface. Human performance was compared with model
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predictions on the variable of search time. Data from human participants fit
extremely well with search time predictions for two of these models, and the other
six were abandoned. The remaining models included predictions of eye
movements, which were ultimately compared with the observed eye movement
data. Analysis yielded several recommendations for adapting the models to fit the
eye data more precisely. These included increasing foveal coverage over more
than one item at a time to simulate observed peripheral vision, accounting for
observed anticipatory eye movements and adapting search strategy to model an
observed hierarchal approach to the search. As shown in this study, even models
that fit observed data well on relevant dimensions can benefit greatly from
incorporating eye movement data.

Other modeling studies have incorporated eye movement analysis with
dynamic tasks, requiring completion of time-pressured objectives and other
actions comparable to those of the AMBR air traffic control task. Salvucci (2005)
used a driving simulation to test a model accounting for human multitasking. The
model used was a version of the ACT-R cognitive architecture, modified to
include a general executive capable of managing several tasks simultaneously.
The model was run on the driving simulation in three different studies: An
analysis of driving while operating a radio, an analysis of driving while dialing a
cellular phone and an analysis of driving without any secondary task. Eye
tracking allowed these researchers to compare the models simulated visual
attention patterns to human eye movement patterns. Of particular interest was the
amount of time spent monitoring traffic and controlling secondary devices. A
comparison between the eye data and the ACT-R vision module suggested that
the model simulated human visual patterns extremely well, in both monitoring of
traffic and control of the radio and cellular phone. These results provided
validation for ACT-R as an accurate model of visual management of a dynamic
multitasking environment. These studies demonstrate the symbiotic research
relationship between cognitive modeling and eye movement research.

THE CURRENT STUDY

Previous research has emphasized the importance of validating model
predictions with experimental corroboration. Although subjective measures such
as the NASA TLX are convenient means to this end, they lack reliability and are
subject to individual biases. For this reason, the current study sought to bolster the
results of the previous phase of AMBR by comparing model workload predictions
with workload from a psychophysiological measure. The Index of Cognitive
Activity (ICA) is a workload metric that estimates cognitive activity based on
changes in pupil dilation that occur as a result of effortful processing. ICA was
recorded for each participant during the AMBR simulations and used to validate
the ACT-R workload predictions. Both of these measures provide moment-to-
moment workload estimates as well as estimates for scenarios as a whole. In
addition ICA and ACT-R predictions were compared with subjective workload
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ratings, performance and other facets of the AMBR task. The addition of an
objective psychophysiological component to the AMBR workload comparison
contributes a more precise layer of analysis in determining how human
performance and model predictions differ.

As a secondary objective, the use of eye tracking to record ICA provided
the opportunity to analyze participant eye movements and fixation patterns.
Previous research has shown that eye tracking has the potential to provide
invaluable assistance in the development and validation stages of human
performance modeling. As both technologies improve, these disciplines will
undoubtedly be used in conjunction with increasing frequency. The AMBR
project is one such modeling endeavor that could benefit greatly from an analysis
of eye movement and fixation patterns of human participants. Observed
differences in performance and subjective workload ratings on the different
demand levels and display conditions of the air traffic control task make it an
interesting subject for an eye tracking analysis.

This report focuses on how eye tracking may provide validation of model-
generated workload predictions as well as useful information regarding eye
movement patterns and attention shifts during the AMBR task. By examining
when participant workload increases, cognitive models may be refined to more
accurately reflect human experience. By seeing what the participant sees,
inferences may be made about specific strategies used to deal with the demands of
different situations. These data, which were absent from the previous AMBR
analysis, provide insights that allow the development of models that better predict
and simulate human performance. In the following pages, eye movement and
fixation patterns are examined first to cultivate a better understanding of task
behavior. The workload measurements are described thereafter, followed by
comparisons among the three measures.

Method

Participants

Sixteen participants, each of whom qualified for this research based on a
high level of video game experience, took part in the study. Of the participants,
87.5% (n=14) were male, and 12.5% (n=2) were female. Seven participants
reported an age of '21-25', five reported '26-30' and four reported '31-35.' Each
participant completed all testing sessions and was compensated at the end of
session three.
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The Air Traffic Control Task

The present study used a modified version of an air traffic control (ATC)
task to analyze eye movements and cognitive processes. The ATC interface is
shown in Figure 1. The task itself, developed by MacMillan, Deutsch and Young
(1997) as part of the AMBR project, requires the participant to act as an air traffic
controller, assisting numerous aircraft (AC) as they enter and exit the central
airspace. The AC move at a constant rate in either a horizontal or vertical
direction. In this simplified version of an air traffic control environment,
participants are not concerned with AC collisions. AC that appear to be on a
collision course pass each other safely at different altitudes. The central airspace
controlled by the participant is surrounded by four automated air traffic
controllers (North, East, South and West) which are in contact with the participant
throughout the task. The left side of the screen is mainly comprised of a radar
screen of AC movements and locations. The right side consists of messages sent
between the participant, each AC and neighboring air traffic controllers, as well as
the action buttons used in response. The goal of the task is to execute a set of
actions under time pressure to avoid accruing penalty points and keep AC from
being delayed.

Responsibilities of the Air Traffic Controller. The first action that
participants must execute during the task is to accept incoming AC as they near
the yellow boundary of the central airspace. As an AC approaches, a message will
appear in the incoming message window on the right side of the screen prompting
the participant to accept the incoming AC. In this simplified version, the
participant should always accept the AC. If the participant does not respond to the
AC or responds incorrectly, the AC will stop and enter a holding pattern as soon
as it reaches the yellow border of the central airspace. The freezing of the AC will
be accompanied by a change in AC color, from white to red. This signals to the
participant that the AC is currently on hold and actions required to free it should
be taken as soon as possible. The participant will be penalized for failing to accept
the AC in a timely fashion. Additional penalties will accrue for each minute that
an AC remains on hold. After the AC has been accepted it will continue on its
path, crossing into the central airspace.

The next action is to welcome an incoming AC. Approximately 25
seconds after an AC has been accepted, it will send a message saying 'hello' to
the central air traffic controller. The participant should respond to this prompt by
welcoming the AC. A penalty will be assessed for each minute that the welcome
message is not sent. However, failure to welcome does not result in a holding
pattern and, thus, is less important than the initial acceptance of the AC.
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.......... . AC Ago ~. .. A ~ ACReqc

Figure 1. Air Traffic Control Display Screen

The third action is to respond to a speed request message. Over the course
of each scenario, three AC will request an increase in speed. This request appears
in the message module in the bottom right hand corner of the screen. Unlike all
other actions in which there is only one response option, participants have to
make a decision about whether to accept or reject the speed request. This decision
is based on the flight path of the AC requesting a speed increase. If another AC is
traveling directly in front of the requesting AC in the same direction, the speed
request should be rejected. In all other situations, the request should be accepted.
Failure to respond to a speed request receives a penalty for each minute the
request goes unanswered. An incorrect response to a speed request also carries a
penalty. As in the case of the welcome message, the speed request is considered
of lower priority because failure to execute does not result in a holding pattern.

The fourth action that must be carried out is to transfer an AC that is
leaving the central airspace. This is the only action that is not prompted by a
message on the right side of the screen. The participant should transfer an AC as
soon as the nose of the AC touches the green inner border of the airspace. From
that moment, the participant has until the AC reaches the yellow outer border to
transfer it to the proper adjacent controller. If the AC is not transferred in time, it
will turn red and enter a holding pattern. As in the case of failure to accept an
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AC, a point penalty will be assessed along with a penalty for each minute that the
AC remains frozen.

The fifth and final action is to request that an outgoing AC contact the
next controller. Approximately 18 seconds after an AC has been transferred, a
message will appear stating that it has been accepted into a neighboring airspace.
The participant must then request that the transferred AC contact the next air
traffic controller. If this action is not taken by the time the AC reaches the yellow
outer border, it will go into a holding pattern and the same penalties will apply. It
is important to note, that for an incoming AC, there is only one compulsory action
to keep the AC on its scheduled flight. An outgoing AC, on the other hand, must
be both transferred and requested to contact the next controller to keep it from
entering a holding pattern.

Additional Penalties. There are three additional penalties that are assessed
if the aforementioned actions are not carried out accurately and efficiently:

(1) Sometimes in the heat of the task it becomes difficult to
remember which actions have already been taken. Sending a
duplicate message to an AC or a neighboring air traffic controller
results in a point penalty.

(2) It is also important to choose the appropriate action and the
appropriate AC when responding to a prompt. In addition, the
participant must be careful not to respond prematurely. The action
will not be accepted unless the proper prompting message or event
has occurred. Sending a message that does not make sense, such as
welcoming an outgoing AC or accepting an AC that has not yet
requested acceptance, results in a point penalty.

(3) Executing a command correctly requires that the participant first
click on the appropriate action button (ACCEPT, WELCOME,
TRANSFER, etc), then the AC involved and finally the SEND
button. In addition, accepting, transferring and requesting contact
from an AC also require the participant to click on the air traffic
controller involved. The welcome and speed request actions do not
require selecting a neighboring air traffic controller. Clicking on the
air traffic controller unnecessarily while executing a welcome or
speed request response results in a point penalty.

Display Conditions. The version of the ATC task used in this study
consisted of two variations of display condition: text and color. The text display
condition required participants to rely partially on the text messages on the right
side of the screen to decide which actions to take. In the text display, each AC
was colored white at all times unless it entered a holding pattern (at which point it
turned red).
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The color display provided an aid to decision making for participants. In
this condition a color-coding system was used to identify which AC required
attention and specifically, which type of action the AC required. As in the text
condition, messages and AC positions prompted actions. However, in the color
condition the AC itself changed to a different color depending on which action it
required as soon as its corresponding prompt appeared. AC in need of acceptance
turned green; AC in need of welcome turned blue; AC making a speed request
turned magenta; AC awaiting transfer turned brown; AC awaiting a message to
contact the next controller turned yellow. As soon as the appropriate action was
carried out by the participant, the AC changed back to white to signal that no
further actions were required for that particular AC. Eye movement data was
analyzed for both text and color display scenarios. Workload analysis was
completed for text scenarios only.

Levels of Demand In both the text and color display conditions, there
were three levels of demand. The number of planes requiring processing remained
constant across levels. The increase in demand resulted from decreasing the
length of time given to process all planes. In the lowest level of demand, scenarios
lasted for 11.5 minutes, and an average of 14.9 AC were on screen at any given
time (Level 1). The intermediate scenarios lasted for 9 minutes and the average
number of AC on screen was 16.6 (Level 2). The highest level of demand
scenarios lasted 6.5 minutes and averaged 18.5 AC on screen at a time (level 3).

Practice and Testing Scenarios. The ATC task consisted of four
equivalent sets of scenarios. (A, A*, B, B*). Each contained a scenario for each
of the three demand levels and for each of the two display types. The starred
scenarios (A* and B*) were mirror images of the non-starred scenarios (A and B
respectively). Therefore, these scenarios were judged to be comparable in
difficulty. Half of the participants were trained on A and A* scenarios and tested
on B and B* scenarios, while the other half were trained on a B and B* scenarios
and tested on A and A* scenarios.

Description of Workload Measures

The NASA Taskload Index. The NASA Taskload Index (TLX) is a multi-
dimensional rating tool designed to provide subjective assessments of operator
workload in a variety of contexts. The TLX provides an overall workload score
for a specific task based on ratings from six subscales: Mental Demands, Physical
Demands, Temporal Demands, Performance, Effort and Frustration. It has been
used in a variety of tasks ranging from flight simulations to arithmetic tasks and
has been validated by Hart and Staveland (1988). In the context of past and
present AMBR research, the TLX served as the tool for measuring workload on
each of the air traffic control scenarios. The TLX was selected because it is
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convenient to administer and score and is conceptually manageable in the context
of the model. The complete NASA TLX can be found in Appendix A.

The ACT-R Model The ACT-R cognitive architecture has a long and rich
history (Anderson & Lebiere, 1998). From its initial structure as a production
system model, ACT-R has evolved into a hybrid architecture combining
important aspects of symbolic and subsymbolic systems. One of the most
important features of the architecture is its capability of simulating human
performance on complex tasks by composing together many basic cognitive,
perceptual and motor actions. ACT-R models can now make predictions about
aspects of cognition that occur every few hundred milliseconds. ACT-R provides
a description of cognition that is far above elementary brain processes but
considerably below complex tasks like the AMBR Task (Lebiere, Anderson &
Bothell, 2001). In its current configuration, ACT-R is highly sensitive to time
pressure and high information-processing demand, making it appropriate for use
in an Air Traffic Control task such as AMBR.

A model of cognitive workload under the ACT-R architecture was
developed by Christian Lebiere as part of the AMBR Project (Lebiere, 2001).
The model was highly successful in predicting cognitive workload, and it was
demonstrated to be sensitive to level of task embedding, interaction speed, level
of interface decision support, and individual differences.

The workload estimates for that model were aimed at predicting the self-
reported measures of workload given by participants to the NASA TLX
questionnaire. Thus, they were necessarily global estimates spanning an entire
scenario because the TLX covered an entire scenario. In the research presented
here, we look not only at the model's predictions on such a broad basis but also at
its predictions for moment-to-moment effort and for workload-producing events
that occur during the scenarios. Because an ACT-R model decomposes
performance in the task in terms of each atomic cognitive, perceptual and motor
step, it can generate workload predictions at any level of aggregation desired.
Moreover, because ACT-R is a modular architecture (Anderson et al, 2004), it can
make separate predictions for each module of the architecture, including
cognitive, perceptual and motor workload. Finally, ACT-R is not a normative
model of cognition but can instead capture individual differences through
knowledge and parameter variations, which can provide a measure of individual
workload (Rehling et al, 2004).

The model developed by Lebiere (2001) to predict workload in the AMBR
task was adapted slightly in order to ensure that it was constrained for performing
the same actions in the same time frame as participants, a technique known as
model tracing. Model tracing consists of forcing the model to follow an execution
path that is closest to that of the subject. The goal is to keep the context similar
for subject and model throughout the simulation ran to be able to make
meaningful comparisons for the entire data set instead of just the part until which
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they diverge and make comparisons meaningless. If model and subject were in
different situations, comparing their workload for that particular time interval
would be meaningless. That means:

- Identifying the decision points in the model, which provide for
the possibility of multiple future paths. In this case, those consisted
of conflict resolution sets with more than one production, memory
retrievals that matched more than one chunk, and perceptual events
with multiple possible outcomes.

* Identifying the future events in the trace of the subject run that
determine the model path. In this work, those were the external
actions of the participants that could be unambiguously attributed
to a particular state, e.g. selecting buttons or objects on the screen.

* Formulate a method by which to choose at the model decision
points based upon future subject events. The algorithm used in the
work presented here was a one-to-one correspondence between
subject event and model path.

The only alterations made from the original ACT-R model of the AMBR
task were made in order to accommodate the model tracing procedure. The
current version of the model is described in Appendix B, with particular attention
devoted to describing any alterations that were made from the original model.
Note that the original model was developed in order to perform two versions of
the AMBR task, a color version, and a text version. The current effort only
focused on the text version of the task, and the following discussion only consists
of those aspects of the model relevant to the text version .

The Index of Cognitive Activity. The Index of Cognitive Activity (ICA) is
a patented psychophysiological measure that estimates cognitive workload based
on changes in pupil dilation (Marshall, 2000). The ICA has been used in a number
of applications, including problem solving, decision making, and augmented
cognition (Marshall, Pleydell-Pierce, & Dickson, 2003; Marshall, 2005; Marshall,
in press).

The ICA is based on the well-known fact that the pupil dilates during
effortful cognitive processing (Loewenfeld, 1993). The most common technique
used to assess pupil dilation has been the task-evoked pupillary response,
developed by Jackson Beatty and his colleagues (Beatty & Lucerno-Waggoner,
2002). Although the ICA technique and the task-evoked pupillary response are
based on different methods of analysis, they have been shown to produce similar
results when used in the standard digit span task (Marshall, Davis, & Knust, under
review). This task was originally used by Beatty to demonstrate that the pupil
changes systematically as the task dimensions change. Both the ICA and the task-
evoked pupillary response produce statistically significant linear trends such that
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pupil activity increases as the digit span to be recalled increases. The advantage
of the ICA over the task-evoked pupillary response is that the ICA can be applied
meaningfully across a scenario of complex events for a single individual,
providing event-based as well as time-based estimates of cognitive effort.

The nearly continuous recording of pupil size is a signal that can be
processed like any other signal. The ICA is calculated from high frequency
components of this signal as an individual performs a specific task. It is a measure
of relative change that reflects the number of times each second that abrupt
increases in the amplitude of the pupil signal occur. High ICA values reflect
increases in the number of bursts of dilation by the pupil and correspond to
considerable mental effort. Low ICA, on the other hand, reflects a relatively calm
pupil and little mental effort. ICA has proved effective as a measure of workload
on a variety of tasks and is capable of distinguishing between cognitive states
ranging from focused attention to boredom and fatigue (Marshall, 2005).

The calculation of ICA used in the current study was based on a pupil
signal recorded at 250 Hz. The eye-tracking system used in the study was the
EyeLink II (from SR Research, Ltd.), a binocular system that records both pupil
size and horizontal and vertical point of gaze for each eye every 4 msec. Prior to
ICA computation, the point of gaze data were analyzed to determine the times at
which unusually rapid eye movements or unusually large saccades occurred. The
pupil measurements corresponding to these unusual movements were then
eliminated from the pupil signal by linear interpolation. Full blinks and partial
blinks were also eliminated, with their corresponding pupil values replaced by
linear interpolation. Wavelet analysis was then applied to the resulting pupil
signal, and a statistical threshold was used to determine which wavelet
coefficients were unusually large. The frequency and location in time of these
large coefficients forms the basis of the ICA, as described in Marshall (in press).
ICA estimates were computed both overall and second by second for each
scenario run. Finally, to make comparisons with the ACT-R results easier, the
ICA estimates were transformed into a range of 0-1 through the hyperbolic
tangent.

As in the case of ACT-R workload predictions, ICA is sensitive to
stimulus complexity, making it a viable option for estimating workload on the air
traffic control task. In addition, ICA can provide both sub-second estimates of
workload and global estimates aggregated over entire scenarios. When compared
with ACT-R estimates, ICA aids in determining how closely the model predicts
workload as reflected by an objective psychophysiological measure.

Procedure

Eye-Tracking Procedure. The data reported here were collected using the
EyeLink II Eye-Tracking System from SR Research, Ltd., with binocular tracking
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at a sampling rate of 250 Hz. The EyeLink II System consists of small video
cameras mounted on a lightweight headband. Two cameras record eye data while
a third camera records the position of the head, allowing a reasonable range of
movement. The system offers gaze position error less than .050.

The ATC task screen was divided into 17 regions corresponding to the
different sections of the screen. These regions cover each of the action buttons
and message windows as well as key features of the radar screen of AC positions.
The display screen and all regions can be seen in Appendix B. The areas of the
screen examined most carefully were the regions comprising the radar screen and
those comprising the message windows (see Figure 2). Eye data were analyzed to
determine the percentage of total viewing time spent in each region and the
number of transitions between regions.

Figure 2: Analysis focused heavily on these areas

Experimental Procedure. Participation in the study consisted of three
experimental sessions over the course of one week, with a day off in between
each session. To begin the first session, participants completed a questionnaire
regarding previous video game experience and were introduced to the procedures
and equipment used in eye tracking research. Once participants were comfortable
with these aspects of the project, the experimenter proceeded to explain the ATC
task. The first session consisted entirely of training and practice. The
experimenter explained each aspect of the rules and penalty point system,
providing demonstrations as needed. Participants were then given the opportunity
to practice independently, both with and without guidance from the experimenter.
The participant finished session one by completing two scenarios while eye
movements were measured.

Session two involved the completion of six scenarios by each participant
without the assistance of the experimenter. The order of display condition was
counterbalanced such that odd-numbered participants began with three text
display condition scenarios and then, after a short break, completed three color
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display condition scenarios. Even-numbered participants began with three color
condition scenarios and then, after a short break, completed three text condition
scenarios. Participants always completed demand Level 1 scenarios first, Level 2
scenarios second, and Level 3 scenarios last (which was the order used by the
original AMBR study). After completion of each scenario, participants completed
TLX workload ratings. The experimenter recorded eye movements and pupil
dilation on all six scenarios for session two. Although eye tracking was employed
in these first two sessions, this was primarily to allow the participant to grow
accustomed to performing the task while wearing the eye tracking headset. Data
from these first sessions are not included in the analysis.

Session three proceeded in much the same way as session two.
Participants completed six scenarios with a short break in the middle. The specific
scenarios completed were slightly different than in session 2, but the order of
display condition and demand level remained the same. TLX workload ratings
were again taken after each scenario. After completion of the final scenario,
participants completed a follow-up questionnaire, received a debriefing, and were
dismissed. Eye movements and task performance data from this third session,
after participants had received extensive training and practice, are the focus of the
current analysis.

Workload Analysis Procedure. A data file recording gaze position at 250
Hz was used to analyze participant gaze and transitions between regions. Each
completed scenario corresponded to a separate eye data file. These files were then
adjusted to account for slight shifts in the equipment so that the data files reflected
as exactly as possible where participants were looking at all points during the
tasks. This allowed participant data to be aggregated across subjects or scenarios
or analyzed on a single subject basis.

On screen stimuli, aircraft movements, and participant actions were
summarized in log files to be compared with workload data. These files organized
all events and actions chronologically along with aircraft coordinates and
programming terminology to provide an individualized textual representation of
each scenario. The large size and unwieldy format of these files necessitated a
further refinement to exclude irrelevant information and organize all pertinent
events and actions on a second by second basis.

The resulting condensed data files contained 13 variables calculated on a
second-by-second basis. Eight variables recorded the various dimensions of the
stimuli on the display. The first variable provided information on how many AC
were moving during each second of each scenario. Five variables detailed the
occurrence of each of the five stimuli requiring action (e.g. plane requests
acceptance, plane crosses border, etc.) with an additional variable capturing the
overall count of stimuli for each second. A final stimulus variable provided
information on when an aircraft entered a holding pattern (the most critical error
in the simulation).
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Two response variables were coded. The first specified the time at which a
response option was chosen (e.g. 'transfer aircraft,' 'send welcome message,' etc)
and the second specified the time at which the send button was clicked.

Two final variables captured global aspects of the simulation. The variable
Taskload was calculated by summing the number of stimuli awaiting response.
For example, if there were three stimuli to which the participant had not yet
responded, Taskload would be three. As soon as responses were made to address
those three stimuli, Taskload would return to zero until another stimulus event
occurred. Taskload was used extensively in the analyses and was considered
especially relevant because it revealed periods when participants were overloaded
with actions requiring completion. The final variable was a total activity score.
This variable summed all stimuli, response option choices, responses and the
Taskload for each second. This total activity score served as a composite of on-
screen action as a way of revealing the time periods during which the most
workload was taking place. Presumably, these periods of time, marked by
increased stimulus occurrence, button clicks and accumulating Taskload, should
be associated with increased ACT-R and ICA estimates of workload. Enhanced
AMBR log files containing these variables were created for each scenario of the
final day of testing, yielding a total of six files for each participant.

The workload estimates reported here were gathered from three sources:

(1) The TLX was completed at the end of each scenario by each
participant. All scales were averaged to provide a total TLX
score.

(2) ACT-R workload estimates were calculated every 50
milliseconds basis and aggregated across five second intervals.
These intervals were used to calculate total task averages and for
comparison with five second ICA intervals.

(3) ICA was recorded at 250 Hz and summarized on a second-by-
second scale, as well as for entire scenarios. The second-by-
second demarcation was further aggregated over five and ten
second intervals. The ICA provides workload estimates for the
left and right eye separately as well as an averaged total of both
eyes. The right eye was found to be the better estimator for the
current study and was used in the analyses here.

All workload measures were compared with each other and with data from
the condensed AMBR logs. This study provided the opportunity to analyze
specifically which elements of the task were influencing subjective,
psychophysiological, and predictive measures of workload.
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RESULTS I: HUMAN SUBJECT COMPARISONS

Before approaching the eye data, human subject variables were analyzed
for comparison with the previous AMIBR sample. The three dependant measures
examined were performance, TLX workload ratings, and reaction time.
Performance data consisted of the averaged score in penalty points on each
scenario. Workload ratings by each participant were averaged to create an
aggregate workload rating for each task. Reaction time was determined by
calculating the average difference between a stimulus occurring on screen and a
proper action taken in response. These dependent measures were the same three
measures used in previous AMBR research.

Results from performance data indicated that participants accrued more
penalty points in text display scenarios than in the color display scenarios, F
(1,82)=21.14, p<.001. Performance also suffered as overall task demand level
increased, F (2,81)=3.26, p<.05, and the interaction between display condition
and demand level was significant, F (2,81)=4.89, p<.01. Because participants
generally performed near perfection on color display scenarios at all three levels,
the effect of scenario demand was only significant in text display scenarios, F
(2,81)=5.21, p<.01. This performance data corroborates the findings of previous
AMBR research; participants perform more poorly on the text scenarios,
especially as task demand level increases.

Results from reaction time data suggested that participants reacted to on-
screen events more quickly in the color display condition and on lower demand
scenarios. An analysis of variance yielded significant main effects for display
condition, F (1,82)=55.56, p<.001, and demand level, F (2,81)=13.42, p<.001,
and a significant display condition by demand level interaction, F (2,81)=8.05,
p<.001. Unlike the performance effects, these reaction time effects were
significant independently for both color and text scenarios. Participants reacted
more slowly on text scenarios than on color, and this effect was exacerbated by
increase in demand level. These results concur with those of the previous AMBR
sample.

Participant TLX ratings on each of the six scales of the TLX were
averaged to create a total TLX rating for each scenario. Analysis of this total TLX
score yielded significant main effects for display condition, F (1,82)=21.26,
p<.001, and level of demand, F (2,81)=3.19, p<.05. The interaction was not
significant. As in the case of performance effects, TLX ratings did not differ
significantly across levels of demand on color display scenarios taken
independently. In other words, the main effect for level of demand was primarily
caused by differences in TLX ratings in the text scenarios. These results are in
agreement with data from previous AMBR subjects with one exception; the
previous study demonstrated a significant main effect of demand on color display
scenarios independently, and the current study did not.
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RESULTS II: PARTICIPANT VIEWING PATTERNS

Display Condition Differences

As shown in Figure 3, participants exhibited significantly divergent
viewing patterns on text display and color display scenarios. The major difference
was the amount of time spent viewing the radar screen on the left side of the
display. This area contained a radar plot of the central sector that the participant
controlled, as well as part of the four neighboring air traffic controllers' sectors.
In the text display condition, participants spent 57.6% of viewing time monitoring
aircraft movement in this part of the screen. During color display scenarios,
participants spent 72.0% of total scenario time viewing this area. This result was
accounted for by differences in viewing percentages in the message windows.
This area contained all windows on the right side of the screen which displayed
incoming and outgoing messages. During the text display condition, participants
spent 38.4% of total viewing time in this part of the screen, compared with only
22.9% in color display scenarios.

-8 Radarscreen -A Message windows
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Text Color

Figure 3. Viewing Percentages on text and color scenarios

Further analysis of the viewing statistics revealed specifically which
regions received the most attention in the different display conditions. The
outgoing AC messages region exhibited the greatest increase in viewing time in
text scenarios, F (1,82)=107.62, p<.001, followed by the incoming AC messages
region, F (1,82)=67.14, p<.001. The inner square region demonstrated the
greatest increase in color display viewing percentage compared to text, F
(1,82 )=5 2 .08 , p<.001. Other regions influenced to a lesser extent by display type
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included west inner border and north exterior, which received more attention in
color display scenarios, and speed request messages and outgoing response
options, which received more attention in text scenarios.

Demand Level Differences

Level of demand impacted participant viewing patterns as well. These
differences were most evident when text and color were separated. In text
scenarios, percentage of time viewing the radar screen decreased as demand level
increased. Participants spent 60.0% of scenario time in this area during level 1,
compared with 57.7% in level 2 and 54.8% in level 3. As attention to this area
decreased, attention to the message windows increased; during level 1 24.0% of
time was spent in the message windows compared with 25.9% in level 2 and
27.7% in level 3. In color scenarios, there was not a clear change in percentage of
time spent on the radar screen at different levels of demand. All levels of color
scenarios averaged near the grand mean of 72.0%. However, there was a
noticeable trend regarding attention to the message windows. As level of demand
increased, percentage of time viewing the message windows decreased.
Participants spent 13.5% of scenario time in this area during level 1, compared
with 10.2% in level 2 and 8.8% in level 3.

Further analysis of viewing statistics revealed which regions received the
most viewing attention during different levels of demand. In text conditions, the
speed request messages region exhibited the greatest increase in viewing time as
demand increased, F (2,39)=21.26, p<.001, followed by the outgoing AC
messages region, F (2,39)=5.47, p<.00 8 . The inner square region demonstrated
the greatest decrease in viewing percentage as demand increased, F (2,39)=15.01,
p<.001. Another region influenced by demand level was outgoing response
options, which received more attention as demand increased.

In color scenarios, the speed request messages region exhibited the
greatest decrease in viewing time as demand increased, F (2,39)=4.65, p<.015,
followed by the outgoing AC messages region, F (2,39)=3.25, p<.05. The west
exterior region demonstrated the greatest increase in viewing percentage as
demand increased, F (2,39)=7.04, p<.002. No other regions demonstrated
significant differences across demand levels.

Display Condition and Demand Level Interactions

The combined main effects of display condition and level of demand
yielded interactions meriting further analysis. Display type and level of demand
interacted to influence percentage of time spent viewing the radar screen, F
(2,81)=7.032, p<.01 1. During text display, increases in demand level caused
decreases in viewing time in this area of the screen. Contrarily, during color
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display, increases in demand caused increases in viewing the radar screen.
Specific regions affected by interactions causing a similar trend included the inner
square and north exterior regions.

Display type and demand level interacted to facilitate an opposite pattern
in percentage of time spent viewing the message windows, F (2,81)=35.78,
p<.00 1. During the text display conditions, as demand increased participants spent
more time viewing the message windows. In color display conditions, on the other
hand, increases in demand were met with decreases in viewing time for the
message windows. Specific regions affected by interactions causing a similar
trend included the incoming AC messages and outgoing AC messages regions.

Participant Transition Patterns

For the purposes of this analysis, a transition was defined as any
movement of visual fixation from one region of the screen to another. Of
particular interest were transitions between the radar screen and the message
windows. An analysis of the average number of transitions between these two
screen areas per second yielded significant differences, F (1,82)=11.95, p<.004 .
During text display scenarios, participants shifted gaze between the radar screen
and the message windows significantly more than in color scenarios. In all
scenarios, transitions most frequently involved the inner square region, followed
by the incoming AC messages and the outgoing AC messages regions. Level of
demand significantly affected transitions per second between the radar screen and
message windows, F (2,81)=15.58, p<.001. As demand level increased,
transitions per second between these regions decreased.

Analysis of the human performance data alongside the transition data
yielded some interesting associations. On text scenarios, transitions per second
between message windows and radar screen correlated negatively with score
when controlling for demand level, r (39)=-0.31, p<.05. This suggests that poor
performance was associated with a decrease in transitions, regardless of demand
level. This trend was not evident in the color scenarios, probably due to the lack
of variance in scores on color scenarios. The color scenarios did suggest an
association between number of transitions and certain facets of the TLX scale. As
number of transitions per second increased, participants rated the scenarios as
being more mentally and temporally demanding, r (39)=0.35, p<.03 and r
(39)=0.39, p<.0 2 respectively.


